# Text to Decimal

Use the "Convert" button after entering an ASCII value, such as "love," to receive the result "108 111 118 101," to use the ASCII text to decimal conversion tool. You can do this to convert up to 128 ASCII characters to decimal characters.

## ASCII Text

One of the most widely used character encoding schemes is ASCII (American Standard Code for Information Interchange). ASCII, which was first created from telegraphic codes, is now often used in electronic communication to transmit text.

The ASCII code expresses text (characters) with various numbers because computers can only interpret numbers. A computer "understands" and displays text in this way.

The foundation of the original ASCII is 128 characters. The 26 letters of the English alphabet (in both upper and lower case), the digits 0 through 9, and several punctuation marks are included. Each character has a decimal value from 0 to 127 in the ASCII code. As an illustration, the ASCII value for the upper letter A is 65, while for the lower case A is 97.

## Decimal System

The decimal numeral system is the most widely used and accepted system in daily life. It bases itself on the number 10. (radix). Consequently, it has ten symbols: The digits 0 through 9, namely 0, 1, 2, 3, 4, 5, 6, 7, and 9.

Many ancient civilizations used the decimal numeral system, which is one of the earliest numeral systems that is now known. The Hindu-Arabic numeral system solved the problem of representing considerable numbers in the decimal system. The Hindu-Arabic numeral system assigns positions to the digits of a number. This system uses powers of base 10 to calculate numbers, and the digits are raised to the nth power according to their placements.

### Consider the decimal number 2345.67 as an example:

- The number 5 is in the place of ones (100 equals 1), and the number 4 is in the place of tens (101)
- 3 is in the hundreds position (102)
- 2 is in the thousands position (103)

In the meantime, the digits 6 and 7 are in the tenths (1/10, which is 10-1) and the hundredths (1/100, which is 10-2) positions, respectively, after the decimal point.

Therefore, the following is another way to express the number 2345.67: (2 * 103) + (3 * 102) + (4 * 101) + (5 * 100) + (6 * 10-1) + (7 * 10-2)

## How to Convert ASCII Text to Decimal

The process of changing ASCII text into decimal numbers is pretty simple. To perform this translation, all you need is an ASCII table (which you may, of course, remember!).

This is so that letters can already be represented in decimal numbers using the ASCII code. The original ASCII represents 128 characters in decimal numerals. The decimal digits 0 to 127 are allocated to each of these characters, which include the letters of the English alphabet, numerals, and different punctuation marks.

## ASCII text to hex conversion table

ASCII Character |
Hexadecimal | Binary | Decimal |
---|---|---|---|

NUL | 00 | 00000000 | 0 |

SOH | 01 | 00000001 | 1 |

STX | 02 | 00000010 | 2 |

ETX | 03 | 00000011 | 3 |

EOT | 04 | 00000100 | 4 |

ENQ | 05 | 00000101 | 5 |

ACK | 06 | 00000110 | 6 |

BEL | 07 | 00000111 | 7 |

BS | 08 | 00001000 | 8 |

HT | 09 | 00001001 | 9 |

LF | 0A | 00001010 | 10 |

VT | 0B | 00001011 | 11 |

FF | 0C | 00001100 | 12 |

CR | 0D | 00001101 | 13 |

SO | 0E | 00001110 | 14 |

SI | 0F | 00001111 | 15 |

DLE | 10 | 00010000 | 16 |

DC1 | 11 | 00010001 | 17 |

DC2 | 12 | 00010010 | 18 |

DC3 | 13 | 00010011 | 19 |

DC4 | 14 | 00010100 | 20 |

NAK | 15 | 00010101 | 21 |

SYN | 16 | 00010110 | 22 |

ETB | 17 | 00010111 | 23 |

CAN | 18 | 00011000 | 24 |

EM | 19 | 00011001 | 25 |

SUB | 1A | 00011010 | 26 |

ESC | 1B | 00011011 | 27 |

FS | 1C | 00011100 | 28 |

GS | 1D | 00011101 | 29 |

RS | 1E | 00011110 | 30 |

US | 1F | 00011111 | 31 |

Space | 20 | 00100000 | 32 |

! | 21 | 00100001 | 33 |

" | 22 | 00100010 | 34 |

# | 23 | 00100011 | 35 |

$ | 24 | 00100100 | 36 |

% | 25 | 00100101 | 37 |

& | 26 | 00100110 | 38 |

' | 27 | 00100111 | 39 |

( | 28 | 00101000 | 40 |

) | 29 | 00101001 | 41 |

* | 2A | 00101010 | 42 |

+ | 2B | 00101011 | 43 |

, | 2C | 00101100 | 44 |

- | 2D | 00101101 | 45 |

. | 2E | 00101110 | 46 |

/ | 2F | 00101111 | 47 |

0 | 30 | 00110000 | 48 |

1 | 31 | 00110001 | 49 |

2 | 32 | 00110010 | 50 |

3 | 33 | 00110011 | 51 |

4 | 34 | 00110100 | 52 |

5 | 35 | 00110101 | 53 |

6 | 36 | 00110110 | 54 |

7 | 37 | 00110111 | 55 |

8 | 38 | 00111000 | 56 |

9 | 39 | 00111001 | 57 |

: | 3A | 00111010 | 58 |

; | 3B | 00111011 | 59 |

< | 3C | 00111100 | 60 |

= | 3D | 00111101 | 61 |

> | 3E | 00111110 | 62 |

? | 3F | 00111111 | 63 |

@ | 40 | 01000000 | 64 |

A | 41 | 01000001 | 65 |

B | 42 | 01000010 | 66 |

C | 43 | 01000011 | 67 |

D | 44 | 01000100 | 68 |

E | 45 | 01000101 | 69 |

F | 46 | 01000110 | 70 |

G | 47 | 01000111 | 71 |

H | 48 | 01001000 | 72 |

I | 49 | 01001001 | 73 |

J | 4A | 01001010 | 74 |

K | 4B | 01001011 | 75 |

L | 4C | 01001100 | 76 |

M | 4D | 01001101 | 77 |

N | 4E | 01001110 | 78 |

O | 4F | 01001111 | 79 |

P | 50 | 01010000 | 80 |

Q | 51 | 01010001 | 81 |

R | 52 | 01010010 | 82 |

S | 53 | 01010011 | 83 |

T | 54 | 01010100 | 84 |

U | 55 | 01010101 | 85 |

V | 56 | 01010110 | 86 |

W | 57 | 01010111 | 87 |

X | 58 | 01011000 | 88 |

Y | 59 | 01011001 | 89 |

Z | 5A | 01011010 | 90 |

[ | 5B | 01011011 | 91 |

\ | 5C | 01011100 | 92 |

] | 5D | 01011101 | 93 |

^ | 5E | 01011110 | 94 |

_ | 5F | 01011111 | 95 |

` | 60 | 01100000 | 96 |

a | 61 | 01100001 | 97 |

b | 62 | 01100010 | 98 |

c | 63 | 01100011 | 99 |

d | 64 | 01100100 | 100 |

e | 65 | 01100101 | 101 |

f | 66 | 01100110 | 102 |

g | 67 | 01100111 | 103 |

h | 68 | 01101000 | 104 |

i | 69 | 01101001 | 105 |

j | 6A | 01101010 | 106 |

k | 6B | 01101011 | 107 |

l | 6C | 01101100 | 108 |

m | 6D | 01101101 | 109 |

n | 6E | 01101110 | 110 |

o | 6F | 01101111 | 111 |

p | 70 | 01110000 | 112 |

q | 71 | 01110001 | 113 |

r | 72 | 01110010 | 114 |

s | 73 | 01110011 | 115 |

t | 74 | 01110100 | 116 |

u | 75 | 01110101 | 117 |

v | 76 | 01110110 | 118 |

w | 77 | 01110111 | 119 |

x | 78 | 01111000 | 120 |

y | 79 | 01111001 | 121 |

z | 7A | 01111010 | 122 |

{ | 7B | 01111011 | 123 |

| | 7C | 01111100 | 124 |

} | 7D | 01111101 | 125 |

~ | 7E | 01111110 | 126 |

DEL | 7F | 01111111 | 127 |