# Text to Binary

## About Text to Binary Converter

Convert text into binary. Computers record all characters as binary digits. Computer commands or text are represented using binary numbers 0 and 1, or binary code. A bit string assignment is made for each instruction or symbol. Commands, letters, or symbols may represent the strings. These codes are employed in computers to encode data.

This base-2 or binary numeric system is employed in computer science and mathematics. The two symbols are all that the system uses to represent values. Binary numbers are the common name for the values in binary strategies.

Computers employ the binary system internally in digital electronics and, more precisely, in digital electronic circuits that use logic gates (with values of 0 and 1). Mobile phones and other computer-based gadgets employ the binary scheme as well.

Binary and the human-use base-10 system can be converted back and forth. You can also convert between hexadecimal and binary, where one hex digit requires four binary digits to express it. Another option is to convert between binary and octal. Three binary digits represent an octal number. Octal 0 corresponds to binary 000.

The binary numbering system is used in binary coding to represent text or instructions.

## How do you convert the binary 'A' character?

Using the ASCII table, 'A' is equal to 6510, 64+1, 26+20, and 010000012

## How do you convert the binary 0 characters?

Using the ASCII table, "0" equals 4810, 32+16, 25+24, and 001100002

## Text to Binary Conversion Techniques

Text to ASCII binary conversion:

1. Get character
2. Obtain the character's decimal code from the ASCII table.
3. Decimal to binary conversion
4. Proceed to the following character

Example

Text "Play Ground" to binary ASCII code conversion:

Solution:

To obtain an ASCII code from a character, use an ASCII table.

"P" => 80 = 26+24 = 010100002

"l" => 108 = 26+25+23+22 = 011011002

"a" => 97 = 26+25+20 = 011000012

You should receive the binary bytes for each text character:

"01010000 01101100 01100001 01101110 01110100 00100000 01110100 01110010 01100101 01100101 01110011"

## Binary Numbers To ASCII Characters Conversion Table

 Binary Text (ASCII) 00000000 NUL 00000001 SOH 00000010 STX 00000011 ETX 00000100 EOT 00000101 ENQ 00000110 ACK 00000111 BEL 00001000 BS 00001001 HT 00001010 LF 00001011 VT 00001100 FF 00001101 CR 00001110 SO 00001111 SI 00010000 DLE 00010001 DC1 00010010 DC2 00010011 DC3 00010100 DC4 00010101 NAK 00010110 SYN 00010111 ETB 00011000 CAN 00011001 EM 00011010 SUB 00011011 ESC 00011100 FS 00011101 GS 00011110 RS 00011111 US 00100000 Space 00100001 ! 00100010 " 00100011 # 00100100 \$ 00100101 % 00100110 & 00100111 ' 00101000 ( 00101001 ) 00101010 * 00101011 + 00101101 - 00101110 . 00101111 / 00110000 0 00110001 1 00110010 2 00110011 3 00110100 4 00110101 5 00110110 6 00110111 7 00111000 8 00111001 9 00111010 : 00111011 ; 00111100 < 00111101 = 00111110 > 00111111 ? 01000000 @ 01000001 A 01000010 B 01000011 C 01000100 D 01000101 E 01000110 F 01000111 G 01001000 H 01001001 I 01001010 J 01001011 K 01001100 L 01001101 M 01001110 N 01001111 O 01010000 P 01010001 Q 01010010 R 01010011 S 01010100 T 01010101 U 01010110 V 01010111 W 01011000 X 01011001 Y 01011010 Z 01011011 [ 01011100 \ 01011101 ] 01011110 ^ 01011111 _ 01100000 ` 01100001 a 01100010 b 01100011 c 01100100 d 01100101 e 01100110 f 01100111 g 01101000 h 01101001 i 01101010 j 01101011 k 01101100 l 01101101 m 01101110 n 01101111 o 01110000 p 01110001 q 01110010 r 01110011 s 01110100 t 01110101 u 01110110 v 01110111 w 01111000 x 01111001 y 01111010 z 01111011 { 01111100 | 01111101 } 01111110 ~ 01111111 DEL